superlu-dist 7.2.0+dfsg1-2 source package in Ubuntu

Changelog

superlu-dist (7.2.0+dfsg1-2) unstable; urgency=medium

  * upload v7.2 to unstable

 -- Drew Parsons <email address hidden>  Tue, 21 Dec 2021 15:34:42 +0100

Upload details

Uploaded by:
Debian Science Team
Uploaded to:
Sid
Original maintainer:
Debian Science Team
Architectures:
any
Section:
misc
Urgency:
Medium Urgency

See full publishing history Publishing

Series Pocket Published Component Section
Jammy release universe misc

Downloads

File Size SHA-256 Checksum
superlu-dist_7.2.0+dfsg1-2.dsc 2.4 KiB 4edf218dba39791c9d00a452db13e821fda47c8b14fc9bd93c417f980f8bf59f
superlu-dist_7.2.0+dfsg1.orig.tar.xz 615.4 KiB 83ce93fdf920c070d195d55b8bcbca3ad96083c6df026aa5f9390f30154d2daf
superlu-dist_7.2.0+dfsg1-2.debian.tar.xz 10.0 KiB 4c19c29e8e2d2c82edcb36044dfc6aebe9c33a3d099a648f3c428b2b91363ac5

Available diffs

No changes file available.

Binary packages built by this source

libsuperlu-dist-dev: Highly distributed solution of sparse linear equations

 SuperLU is a general purpose library for the direct solution of large,
 sparse, nonsymmetric systems of linear equations. The library is
 written in C and is callable from either C or Fortran program. It uses
 MPI, OpenMP and CUDA to support various forms of parallelism. It
 supports both real and complex datatypes, both single and double
 precision, and 64-bit integer indexing. The library routines performs
 an LU decomposition with partial pivoting and triangular system solves
 through forward and back substitution. The LU factorization routines
 can handle non-square matrices but the triangular solves are performed
 only for square matrices. The matrix columns may be preordered (before
 factorization) either through library or user supplied routines. This
 preordering for sparsity is completely separate from the
 factorization. Working precision iterative refinement subroutines are
 provided for improved backward stability. Routines are also provided
 to equilibrate the system, estimate the condition number, calculate
 the relative backward error, and estimate error bounds for the refined
 solutions.
 .
 SuperLU_DIST implements the algorithms for distributed memory,
 targetting highly parallel distributed memory hybrid systems. The
 numerical factorization routines are already implemented for hybrid
 systems with multiple GPUs. Further work will be needed to implement
 the other phases of the algorithms on the hybrid systems and to
 enhance strong scaling to extreme scale.
 .
 The main library is libsuperlu_dist.so but a fortran wrapper library
 is also provided as libsuperlu_dist_fortran.so
 .
 This package provides development files for building client
 applications against superlu-dist.

libsuperlu-dist-dev-dbgsym: debug symbols for libsuperlu-dist-dev
libsuperlu-dist7: Highly distributed solution of sparse linear equations

 SuperLU is a general purpose library for the direct solution of large,
 sparse, nonsymmetric systems of linear equations. The library is
 written in C and is callable from either C or Fortran program. It uses
 MPI, OpenMP and CUDA to support various forms of parallelism. It
 supports both real and complex datatypes, both single and double
 precision, and 64-bit integer indexing. The library routines performs
 an LU decomposition with partial pivoting and triangular system solves
 through forward and back substitution. The LU factorization routines
 can handle non-square matrices but the triangular solves are performed
 only for square matrices. The matrix columns may be preordered (before
 factorization) either through library or user supplied routines. This
 preordering for sparsity is completely separate from the
 factorization. Working precision iterative refinement subroutines are
 provided for improved backward stability. Routines are also provided
 to equilibrate the system, estimate the condition number, calculate
 the relative backward error, and estimate error bounds for the refined
 solutions.
 .
 SuperLU_DIST implements the algorithms for distributed memory,
 targetting highly parallel distributed memory hybrid systems. The
 numerical factorization routines are already implemented for hybrid
 systems with multiple GPUs. Further work will be needed to implement
 the other phases of the algorithms on the hybrid systems and to
 enhance strong scaling to extreme scale.
 .
 The main library is libsuperlu_dist.so but a fortran wrapper library
 is also provided as libsuperlu_dist_fortran.so
 .
 This package provides the superlu-dist and superlu_dist_fortran
 shared libraries.

libsuperlu-dist7-dbgsym: debug symbols for libsuperlu-dist7