dart 6.9.5-4 source package in Ubuntu

Changelog

dart (6.9.5-4) unstable; urgency=medium

  * Add patch to fix glut_human_joint_limits example compilation

 -- Jose Luis Rivero <email address hidden>  Fri, 08 Oct 2021 14:08:33 +0000

Upload details

Uploaded by:
Debian Science Team
Uploaded to:
Sid
Original maintainer:
Debian Science Team
Architectures:
any all
Section:
misc
Urgency:
Medium Urgency

See full publishing history Publishing

Series Pocket Published Component Section

Downloads

File Size SHA-256 Checksum
dart_6.9.5-4.dsc 5.0 KiB 9b5036c3243d7cc4d1e89abda26299f47370c63dcb28dde0e972c799683a69d7
dart_6.9.5.orig.tar.xz 10.1 MiB 7a2412ad027d02998a4cc0e91f7657900ac19eee5a72f5914561143d2b87c67d
dart_6.9.5-4.debian.tar.xz 11.2 KiB 7a1d70c83bf099bbe1aa3f4c4780a3e44409f269e2f03dd0324bf8be391cfdd4

No changes file available.

Binary packages built by this source

dart-doc: Dynamic Animation and Robotics Toolkit - Documentation

 DART is a collaborative, cross-platform, open source library created by the
 Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data
 structures and algorithms for kinematic and dynamic applications in robotics
 and computer animation.
 DART is distinguished by it's accuracy and stability due to its use of
 generalized coordinates to represent articulated rigid body systems and
 computation of Lagrange's equations derived from D.Alembert's principle to
 describe the dynamics of motion.
 For developers, in contrast to many popular physics engines which view the
 simulator as a black box, DART gives full access to internal kinematic and
 dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces,
 transformation matrices and their derivatives. DART also provides efficient
 computation of Jacobian matrices for arbitrary body points and coordinate
 frames. Contact and collision are handled using an implicit time-stepping,
 velocity-based LCP (linear-complementarity problem) to guarantee
 non-penetration, directional friction, and approximated Coulomb friction cone
 conditions. For collision detection, DART uses FCL developed by Willow Garage
 and the UNC Gamma Lab.
 DART has applications in robotics and computer animation because it features a
 multibody dynamic simulator and tools for control and motion planning.
 Multibody dynamic simulation in DART is an extension of RTQL8, an open source
 software created by the Georgia Tech Graphics Lab.
 .
 This package contains documentation, tutorials and examples

libdart-all-dev: Dynamic Animation and Robotics Toolkit - All Development Files

 DART is a collaborative, cross-platform, open source library created by the
 Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data
 structures and algorithms for kinematic and dynamic applications in robotics
 and computer animation.
 DART is distinguished by it's accuracy and stability due to its use of
 generalized coordinates to represent articulated rigid body systems and
 computation of Lagrange's equations derived from D.Alembert's principle to
 describe the dynamics of motion.
 For developers, in contrast to many popular physics engines which view the
 simulator as a black box, DART gives full access to internal kinematic and
 dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces,
 transformation matrices and their derivatives. DART also provides efficient
 computation of Jacobian matrices for arbitrary body points and coordinate
 frames. Contact and collision are handled using an implicit time-stepping,
 velocity-based LCP (linear-complementarity problem) to guarantee
 non-penetration, directional friction, and approximated Coulomb friction cone
 conditions. For collision detection, DART uses FCL developed by Willow Garage
 and the UNC Gamma Lab.
 DART has applications in robotics and computer animation because it features a
 multibody dynamic simulator and tools for control and motion planning.
 Multibody dynamic simulation in DART is an extension of RTQL8, an open source
 software created by the Georgia Tech Graphics Lab.
 This package does not contain any file but install all development packages
 .
 Metapackage for all development files

libdart-collision-bullet-dev: Dynamic Animation and Robotics Toolkit - Bullet Collision Dev

 DART is a collaborative, cross-platform, open source library created by the
 Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data
 structures and algorithms for kinematic and dynamic applications in robotics
 and computer animation.
 DART is distinguished by it's accuracy and stability due to its use of
 generalized coordinates to represent articulated rigid body systems and
 computation of Lagrange's equations derived from D.Alembert's principle to
 describe the dynamics of motion.
 For developers, in contrast to many popular physics engines which view the
 simulator as a black box, DART gives full access to internal kinematic and
 dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces,
 transformation matrices and their derivatives. DART also provides efficient
 computation of Jacobian matrices for arbitrary body points and coordinate
 frames. Contact and collision are handled using an implicit time-stepping,
 velocity-based LCP (linear-complementarity problem) to guarantee
 non-penetration, directional friction, and approximated Coulomb friction cone
 conditions. For collision detection, DART uses FCL developed by Willow Garage
 and the UNC Gamma Lab.
 DART has applications in robotics and computer animation because it features a
 multibody dynamic simulator and tools for control and motion planning.
 Multibody dynamic simulation in DART is an extension of RTQL8, an open source
 software created by the Georgia Tech Graphics Lab.

libdart-collision-bullet6: No summary available for libdart-collision-bullet6 in ubuntu jammy.

No description available for libdart-collision-bullet6 in ubuntu jammy.

libdart-collision-bullet6-dbgsym: No summary available for libdart-collision-bullet6-dbgsym in ubuntu jammy.

No description available for libdart-collision-bullet6-dbgsym in ubuntu jammy.

libdart-collision-ode-dev: Dynamic Animation and Robotics Toolkit - ODE Collision Dev

 DART is a collaborative, cross-platform, open source library created by
 the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library
 provides data structures and algorithms for kinematic and dynamic
 applications in robotics and computer animation. DART is distinguished
 by it's accuracy and stability due to its use of generalized coordinates
 to represent articulated rigid body systems and computation of
 Lagrange's equations derived from D.Alembert's principle to describe the
 dynamics of motion. For developers, in contrast to many popular physics
 engines which view the simulator as a black box, DART gives full access
 to internal kinematic and dynamic quantities, such as the mass matrix,
 Coriolis and centrifugal forces, transformation matrices and their
 derivatives. DART also provides efficient computation of Jacobian
 matrices for arbitrary body points and coordinate frames. Contact and
 collision are handled using an implicit time-stepping, velocity-based
 LCP (linear-complementarity problem) to guarantee non-penetration,
 directional friction, and approximated Coulomb friction cone conditions.
 For collision detection, DART uses FCL developed by Willow Garage and
 the UNC Gamma Lab. DART has applications in robotics and computer
 animation because it features a multibody dynamic simulator and tools
 for control and motion planning. Multibody dynamic simulation in DART is
 an extension of RTQL8, an open source software created by the Georgia
 Tech Graphics Lab. This package contains the collision ode headers and
 other tools for development.

libdart-collision-ode6: No summary available for libdart-collision-ode6 in ubuntu jammy.

No description available for libdart-collision-ode6 in ubuntu jammy.

libdart-collision-ode6-dbgsym: No summary available for libdart-collision-ode6-dbgsym in ubuntu jammy.

No description available for libdart-collision-ode6-dbgsym in ubuntu jammy.

libdart-dev: Kinematics Dynamics and Optimization Library - development files

 DART is a collaborative, cross-platform, open source library created by the
 Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data
 structures and algorithms for kinematic and dynamic applications in robotics
 and computer animation.
 DART is distinguished by it's accuracy and stability due to its use of
 generalized coordinates to represent articulated rigid body systems and
 computation of Lagrange's equations derived from D.Alembert's principle to
 describe the dynamics of motion.
 For developers, in contrast to many popular physics engines which view the
 simulator as a black box, DART gives full access to internal kinematic and
 dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces,
 transformation matrices and their derivatives. DART also provides efficient
 computation of Jacobian matrices for arbitrary body points and coordinate
 frames. Contact and collision are handled using an implicit time-stepping,
 velocity-based LCP (linear-complementarity problem) to guarantee
 non-penetration, directional friction, and approximated Coulomb friction cone
 conditions. For collision detection, DART uses FCL developed by Willow Garage
 and the UNC Gamma Lab.
 DART has applications in robotics and computer animation because it features a
 multibody dynamic simulator and tools for control and motion planning.
 Multibody dynamic simulation in DART is an extension of RTQL8, an open source
 software created by the Georgia Tech Graphics Lab.
 This package contains main headers and other tools for development.

libdart-external-ikfast-dev: Kinematics Dynamics and Optimization Library - ikfast dev

 DART is a collaborative, cross-platform, open source library created by the
 Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data
 structures and algorithms for kinematic and dynamic applications in robotics
 and computer animation.
 DART is distinguished by it's accuracy and stability due to its use of
 generalized coordinates to represent articulated rigid body systems and
 computation of Lagrange's equations derived from D.Alembert's principle to
 describe the dynamics of motion.
 For developers, in contrast to many popular physics engines which view the
 simulator as a black box, DART gives full access to internal kinematic and
 dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces,
 transformation matrices and their derivatives. DART also provides efficient
 computation of Jacobian matrices for arbitrary body points and coordinate
 frames. Contact and collision are handled using an implicit time-stepping,
 velocity-based LCP (linear-complementarity problem) to guarantee
 non-penetration, directional friction, and approximated Coulomb friction cone
 conditions. For collision detection, DART uses FCL developed by Willow Garage
 and the UNC Gamma Lab.
 DART has applications in robotics and computer animation because it features a
 multibody dynamic simulator and tools for control and motion planning.
 Multibody dynamic simulation in DART is an extension of RTQL8, an open source
 software created by the Georgia Tech Graphics Lab.
 This package contains ikfast headers and other useful tools for
 development.

libdart-external-imgui-dev: Kinematics Dynamics and Optimization Library - imgui dev

 DART is a collaborative, cross-platform, open source library created by the
 Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data
 structures and algorithms for kinematic and dynamic applications in robotics
 and computer animation.
 DART is distinguished by it's accuracy and stability due to its use of
 generalized coordinates to represent articulated rigid body systems and
 computation of Lagrange's equations derived from D.Alembert's principle to
 describe the dynamics of motion.
 For developers, in contrast to many popular physics engines which view the
 simulator as a black box, DART gives full access to internal kinematic and
 dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces,
 transformation matrices and their derivatives. DART also provides efficient
 computation of Jacobian matrices for arbitrary body points and coordinate
 frames. Contact and collision are handled using an implicit time-stepping,
 velocity-based LCP (linear-complementarity problem) to guarantee
 non-penetration, directional friction, and approximated Coulomb friction cone
 conditions. For collision detection, DART uses FCL developed by Willow Garage
 and the UNC Gamma Lab.
 DART has applications in robotics and computer animation because it features a
 multibody dynamic simulator and tools for control and motion planning.
 Multibody dynamic simulation in DART is an extension of RTQL8, an open source
 software created by the Georgia Tech Graphics Lab.
 This package contains imgui headers and other useful tools for
 development.

libdart-external-imgui6: No summary available for libdart-external-imgui6 in ubuntu jammy.

No description available for libdart-external-imgui6 in ubuntu jammy.

libdart-external-imgui6-dbgsym: No summary available for libdart-external-imgui6-dbgsym in ubuntu jammy.

No description available for libdart-external-imgui6-dbgsym in ubuntu jammy.

libdart-external-lodepng-dev: Kinematics Dynamics and Optimization Library - lodepng dev

 DART is a collaborative, cross-platform, open source library created by the
 Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data
 structures and algorithms for kinematic and dynamic applications in robotics
 and computer animation.
 DART is distinguished by it's accuracy and stability due to its use of
 generalized coordinates to represent articulated rigid body systems and
 computation of Lagrange's equations derived from D.Alembert's principle to
 describe the dynamics of motion.
 For developers, in contrast to many popular physics engines which view the
 simulator as a black box, DART gives full access to internal kinematic and
 dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces,
 transformation matrices and their derivatives. DART also provides efficient
 computation of Jacobian matrices for arbitrary body points and coordinate
 frames. Contact and collision are handled using an implicit time-stepping,
 velocity-based LCP (linear-complementarity problem) to guarantee
 non-penetration, directional friction, and approximated Coulomb friction cone
 conditions. For collision detection, DART uses FCL developed by Willow Garage
 and the UNC Gamma Lab.
 DART has applications in robotics and computer animation because it features a
 multibody dynamic simulator and tools for control and motion planning.
 Multibody dynamic simulation in DART is an extension of RTQL8, an open source
 software created by the Georgia Tech Graphics Lab.
 This package contains lodepng headers and other useful tools for
 development.

libdart-external-lodepng6: No summary available for libdart-external-lodepng6 in ubuntu jammy.

No description available for libdart-external-lodepng6 in ubuntu jammy.

libdart-external-lodepng6-dbgsym: No summary available for libdart-external-lodepng6-dbgsym in ubuntu jammy.

No description available for libdart-external-lodepng6-dbgsym in ubuntu jammy.

libdart-external-odelcpsolver-dev: Kinematics Dynamics and Optimization Library - odelcpsolver dev

 DART is a collaborative, cross-platform, open source library created by the
 Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data
 structures and algorithms for kinematic and dynamic applications in robotics
 and computer animation.
 DART is distinguished by it's accuracy and stability due to its use of
 generalized coordinates to represent articulated rigid body systems and
 computation of Lagrange's equations derived from D.Alembert's principle to
 describe the dynamics of motion.
 For developers, in contrast to many popular physics engines which view the
 simulator as a black box, DART gives full access to internal kinematic and
 dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces,
 transformation matrices and their derivatives. DART also provides efficient
 computation of Jacobian matrices for arbitrary body points and coordinate
 frames. Contact and collision are handled using an implicit time-stepping,
 velocity-based LCP (linear-complementarity problem) to guarantee
 non-penetration, directional friction, and approximated Coulomb friction cone
 conditions. For collision detection, DART uses FCL developed by Willow Garage
 and the UNC Gamma Lab.
 DART has applications in robotics and computer animation because it features a
 multibody dynamic simulator and tools for control and motion planning.
 Multibody dynamic simulation in DART is an extension of RTQL8, an open source
 software created by the Georgia Tech Graphics Lab.
 This package contains odelcpsolver headers and other useful tools for
 development.

libdart-external-odelcpsolver6: No summary available for libdart-external-odelcpsolver6 in ubuntu jammy.

No description available for libdart-external-odelcpsolver6 in ubuntu jammy.

libdart-external-odelcpsolver6-dbgsym: No summary available for libdart-external-odelcpsolver6-dbgsym in ubuntu jammy.

No description available for libdart-external-odelcpsolver6-dbgsym in ubuntu jammy.

libdart-gui-dev: Kinematics Dynamics and Optimization Library - gui dev files

 DART is a collaborative, cross-platform, open source library created by the
 Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data
 structures and algorithms for kinematic and dynamic applications in robotics
 and computer animation.
 DART is distinguished by it's accuracy and stability due to its use of
 generalized coordinates to represent articulated rigid body systems and
 computation of Lagrange's equations derived from D.Alembert's principle to
 describe the dynamics of motion.
 For developers, in contrast to many popular physics engines which view the
 simulator as a black box, DART gives full access to internal kinematic and
 dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces,
 transformation matrices and their derivatives. DART also provides efficient
 computation of Jacobian matrices for arbitrary body points and coordinate
 frames. Contact and collision are handled using an implicit time-stepping,
 velocity-based LCP (linear-complementarity problem) to guarantee
 non-penetration, directional friction, and approximated Coulomb friction cone
 conditions. For collision detection, DART uses FCL developed by Willow Garage
 and the UNC Gamma Lab.
 DART has applications in robotics and computer animation because it features a
 multibody dynamic simulator and tools for control and motion planning.
 Multibody dynamic simulation in DART is an extension of RTQL8, an open source
 software created by the Georgia Tech Graphics Lab.
 This package contains GUI headers and other useful tools for GUI development.

libdart-gui-osg-dev: Kinematics Dynamics and Optimization Library - gui-osg dev files

 DART is a collaborative, cross-platform, open source library created by the
 Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data
 structures and algorithms for kinematic and dynamic applications in robotics
 and computer animation.
 DART is distinguished by it's accuracy and stability due to its use of
 generalized coordinates to represent articulated rigid body systems and
 computation of Lagrange's equations derived from D.Alembert's principle to
 describe the dynamics of motion.
 For developers, in contrast to many popular physics engines which view the
 simulator as a black box, DART gives full access to internal kinematic and
 dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces,
 transformation matrices and their derivatives. DART also provides efficient
 computation of Jacobian matrices for arbitrary body points and coordinate
 frames. Contact and collision are handled using an implicit time-stepping,
 velocity-based LCP (linear-complementarity problem) to guarantee
 non-penetration, directional friction, and approximated Coulomb friction cone
 conditions. For collision detection, DART uses FCL developed by Willow Garage
 and the UNC Gamma Lab.
 DART has applications in robotics and computer animation because it features a
 multibody dynamic simulator and tools for control and motion planning.
 Multibody dynamic simulation in DART is an extension of RTQL8, an open source
 software created by the Georgia Tech Graphics Lab.
 This package contains GUI OpenSceneGraph headers and other useful tools for
 GUI OpenSceneGraph development.

libdart-gui-osg6: No summary available for libdart-gui-osg6 in ubuntu jammy.

No description available for libdart-gui-osg6 in ubuntu jammy.

libdart-gui-osg6-dbgsym: No summary available for libdart-gui-osg6-dbgsym in ubuntu jammy.

No description available for libdart-gui-osg6-dbgsym in ubuntu jammy.

libdart-gui6: No summary available for libdart-gui6 in ubuntu jammy.

No description available for libdart-gui6 in ubuntu jammy.

libdart-gui6-dbgsym: No summary available for libdart-gui6-dbgsym in ubuntu jammy.

No description available for libdart-gui6-dbgsym in ubuntu jammy.

libdart-optimizer-ipopt-dev: Kinematics Dynamics and Optimization Library - ipopt optimizer dev

 DART is a collaborative, cross-platform, open source library created by the
 Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data
 structures and algorithms for kinematic and dynamic applications in robotics
 and computer animation.
 DART is distinguished by it's accuracy and stability due to its use of
 generalized coordinates to represent articulated rigid body systems and
 computation of Lagrange's equations derived from D.Alembert's principle to
 describe the dynamics of motion.
 For developers, in contrast to many popular physics engines which view the
 simulator as a black box, DART gives full access to internal kinematic and
 dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces,
 transformation matrices and their derivatives. DART also provides efficient
 computation of Jacobian matrices for arbitrary body points and coordinate
 frames. Contact and collision are handled using an implicit time-stepping,
 velocity-based LCP (linear-complementarity problem) to guarantee
 non-penetration, directional friction, and approximated Coulomb friction cone
 conditions. For collision detection, DART uses FCL developed by Willow Garage
 and the UNC Gamma Lab.
 DART has applications in robotics and computer animation because it features a
 multibody dynamic simulator and tools for control and motion planning.
 Multibody dynamic simulation in DART is an extension of RTQL8, an open source
 software created by the Georgia Tech Graphics Lab.
 This package contains IPOPT optimizer headers and other useful tools for
 development.

libdart-optimizer-ipopt6: No summary available for libdart-optimizer-ipopt6 in ubuntu jammy.

No description available for libdart-optimizer-ipopt6 in ubuntu jammy.

libdart-optimizer-ipopt6-dbgsym: No summary available for libdart-optimizer-ipopt6-dbgsym in ubuntu jammy.

No description available for libdart-optimizer-ipopt6-dbgsym in ubuntu jammy.

libdart-optimizer-nlopt-dev: Kinematics Dynamics and Optimization Library - nlopt optimizer dev

 DART is a collaborative, cross-platform, open source library created by the
 Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data
 structures and algorithms for kinematic and dynamic applications in robotics
 and computer animation.
 DART is distinguished by it's accuracy and stability due to its use of
 generalized coordinates to represent articulated rigid body systems and
 computation of Lagrange's equations derived from D.Alembert's principle to
 describe the dynamics of motion.
 For developers, in contrast to many popular physics engines which view the
 simulator as a black box, DART gives full access to internal kinematic and
 dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces,
 transformation matrices and their derivatives. DART also provides efficient
 computation of Jacobian matrices for arbitrary body points and coordinate
 frames. Contact and collision are handled using an implicit time-stepping,
 velocity-based LCP (linear-complementarity problem) to guarantee
 non-penetration, directional friction, and approximated Coulomb friction cone
 conditions. For collision detection, DART uses FCL developed by Willow Garage
 and the UNC Gamma Lab.
 DART has applications in robotics and computer animation because it features a
 multibody dynamic simulator and tools for control and motion planning.
 Multibody dynamic simulation in DART is an extension of RTQL8, an open source
 software created by the Georgia Tech Graphics Lab.
 This package contains NLOPT optimizer headers and other useful tools for
 development.

libdart-optimizer-nlopt6: No summary available for libdart-optimizer-nlopt6 in ubuntu jammy.

No description available for libdart-optimizer-nlopt6 in ubuntu jammy.

libdart-optimizer-nlopt6-dbgsym: No summary available for libdart-optimizer-nlopt6-dbgsym in ubuntu jammy.

No description available for libdart-optimizer-nlopt6-dbgsym in ubuntu jammy.

libdart-planning-dev: No summary available for libdart-planning-dev in ubuntu jammy.

No description available for libdart-planning-dev in ubuntu jammy.

libdart-planning6: No summary available for libdart-planning6 in ubuntu jammy.

No description available for libdart-planning6 in ubuntu jammy.

libdart-planning6-dbgsym: No summary available for libdart-planning6-dbgsym in ubuntu jammy.

No description available for libdart-planning6-dbgsym in ubuntu jammy.

libdart-utils-dev: Kinematics Dynamics and Optimization Library - utils dev files

 DART is a collaborative, cross-platform, open source library created by the
 Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data
 structures and algorithms for kinematic and dynamic applications in robotics
 and computer animation.
 DART is distinguished by it's accuracy and stability due to its use of
 generalized coordinates to represent articulated rigid body systems and
 computation of Lagrange's equations derived from D.Alembert's principle to
 describe the dynamics of motion.
 For developers, in contrast to many popular physics engines which view the
 simulator as a black box, DART gives full access to internal kinematic and
 dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces,
 transformation matrices and their derivatives. DART also provides efficient
 computation of Jacobian matrices for arbitrary body points and coordinate
 frames. Contact and collision are handled using an implicit time-stepping,
 velocity-based LCP (linear-complementarity problem) to guarantee
 non-penetration, directional friction, and approximated Coulomb friction cone
 conditions. For collision detection, DART uses FCL developed by Willow Garage
 and the UNC Gamma Lab.
 DART has applications in robotics and computer animation because it features a
 multibody dynamic simulator and tools for control and motion planning.
 Multibody dynamic simulation in DART is an extension of RTQL8, an open source
 software created by the Georgia Tech Graphics Lab.
 This package contains headers and other useful tools for development.

libdart-utils-urdf-dev: Dynamic Animation and Robotics Toolkit - URDF Component Development Files

 DART is a collaborative, cross-platform, open source library created by the
 Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data
 structures and algorithms for kinematic and dynamic applications in robotics
 and computer animation.
 DART is distinguished by it's accuracy and stability due to its use of
 generalized coordinates to represent articulated rigid body systems and
 computation of Lagrange's equations derived from D.Alembert's principle to
 describe the dynamics of motion.
 For developers, in contrast to many popular physics engines which view the
 simulator as a black box, DART gives full access to internal kinematic and
 dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces,
 transformation matrices and their derivatives. DART also provides efficient
 computation of Jacobian matrices for arbitrary body points and coordinate
 frames. Contact and collision are handled using an implicit time-stepping,
 velocity-based LCP (linear-complementarity problem) to guarantee
 non-penetration, directional friction, and approximated Coulomb friction cone
 conditions. For collision detection, DART uses FCL developed by Willow Garage
 and the UNC Gamma Lab.
 DART has applications in robotics and computer animation because it features a
 multibody dynamic simulator and tools for control and motion planning.
 Multibody dynamic simulation in DART is an extension of RTQL8, an open source
 software created by the Georgia Tech Graphics Lab.
 This package contains urdf utils headers and other useful tools for
 development.

libdart-utils-urdf6: No summary available for libdart-utils-urdf6 in ubuntu jammy.

No description available for libdart-utils-urdf6 in ubuntu jammy.

libdart-utils-urdf6-dbgsym: No summary available for libdart-utils-urdf6-dbgsym in ubuntu jammy.

No description available for libdart-utils-urdf6-dbgsym in ubuntu jammy.

libdart-utils6: No summary available for libdart-utils6 in ubuntu jammy.

No description available for libdart-utils6 in ubuntu jammy.

libdart-utils6-dbgsym: No summary available for libdart-utils6-dbgsym in ubuntu jammy.

No description available for libdart-utils6-dbgsym in ubuntu jammy.

libdart6: No summary available for libdart6 in ubuntu jammy.

No description available for libdart6 in ubuntu jammy.

libdart6-dbgsym: No summary available for libdart6-dbgsym in ubuntu jammy.

No description available for libdart6-dbgsym in ubuntu jammy.

libkido-dev: No summary available for libkido-dev in ubuntu jammy.

No description available for libkido-dev in ubuntu jammy.

libkido-gui-dev: No summary available for libkido-gui-dev in ubuntu jammy.

No description available for libkido-gui-dev in ubuntu jammy.

libkido-gui-osg-dev: No summary available for libkido-gui-osg-dev in ubuntu jammy.

No description available for libkido-gui-osg-dev in ubuntu jammy.

libkido-gui-osg0: No summary available for libkido-gui-osg0 in ubuntu jammy.

No description available for libkido-gui-osg0 in ubuntu jammy.

libkido-gui0: No summary available for libkido-gui0 in ubuntu jammy.

No description available for libkido-gui0 in ubuntu jammy.

libkido-optimizer-ipopt-dev: No summary available for libkido-optimizer-ipopt-dev in ubuntu jammy.

No description available for libkido-optimizer-ipopt-dev in ubuntu jammy.

libkido-optimizer-ipopt0: No summary available for libkido-optimizer-ipopt0 in ubuntu jammy.

No description available for libkido-optimizer-ipopt0 in ubuntu jammy.

libkido-optimizer-nlopt-dev: No summary available for libkido-optimizer-nlopt-dev in ubuntu jammy.

No description available for libkido-optimizer-nlopt-dev in ubuntu jammy.

libkido-optimizer-nlopt0: No summary available for libkido-optimizer-nlopt0 in ubuntu jammy.

No description available for libkido-optimizer-nlopt0 in ubuntu jammy.

libkido-planning-dev: No summary available for libkido-planning-dev in ubuntu jammy.

No description available for libkido-planning-dev in ubuntu jammy.

libkido-planning0: No summary available for libkido-planning0 in ubuntu jammy.

No description available for libkido-planning0 in ubuntu jammy.

libkido-utils-dev: No summary available for libkido-utils-dev in ubuntu jammy.

No description available for libkido-utils-dev in ubuntu jammy.

libkido-utils0: No summary available for libkido-utils0 in ubuntu jammy.

No description available for libkido-utils0 in ubuntu jammy.

libkido0: No summary available for libkido0 in ubuntu jammy.

No description available for libkido0 in ubuntu jammy.