dart 6.12.1+dfsg4-11build4 source package in Ubuntu

Changelog

dart (6.12.1+dfsg4-11build4) lunar; urgency=medium

  * No-change rebuild against freeglut3.12

 -- Steve Langasek <email address hidden>  Mon, 28 Nov 2022 23:27:13 +0000

Upload details

Uploaded by:
Steve Langasek
Uploaded to:
Lunar
Original maintainer:
Ubuntu Developers
Architectures:
any all
Section:
misc
Urgency:
Medium Urgency

See full publishing history Publishing

Series Pocket Published Component Section

Downloads

File Size SHA-256 Checksum
dart_6.12.1+dfsg4.orig.tar.xz 10.4 MiB bd93ce6889a131ffbed95b283f31fba4d103654f613cba1c2439990ecb5212fe
dart_6.12.1+dfsg4-11build4.debian.tar.xz 21.7 KiB 3ded2acc2ffa60dd3411dd4ac2a1b30f81102240fd2eacb27ea61e1fc728b42e
dart_6.12.1+dfsg4-11build4.dsc 4.7 KiB cf57a57b755edc4f739ae45d6ca1045df4d7fcd3907ccb273551e8ccb3b5e8f4

View changes file

Binary packages built by this source

dart-doc: Kinematics Dynamics and Optimization Library - Documentation

 DART is a collaborative, cross-platform, open source library created by the
 Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data
 structures and algorithms for kinematic and dynamic applications in robotics
 and computer animation.
 DART is distinguished by it's accuracy and stability due to its use of
 generalized coordinates to represent articulated rigid body systems and
 computation of Lagrange's equations derived from D.Alembert's principle to
 describe the dynamics of motion.
 For developers, in contrast to many popular physics engines which view the
 simulator as a black box, DART gives full access to internal kinematic and
 dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces,
 transformation matrices and their derivatives. DART also provides efficient
 computation of Jacobian matrices for arbitrary body points and coordinate
 frames. Contact and collision are handled using an implicit time-stepping,
 velocity-based LCP (linear-complementarity problem) to guarantee
 non-penetration, directional friction, and approximated Coulomb friction cone
 conditions. For collision detection, DART uses FCL developed by Willow Garage
 and the UNC Gamma Lab.
 DART has applications in robotics and computer animation because it features a
 multibody dynamic simulator and tools for control and motion planning.
 Multibody dynamic simulation in DART is an extension of RTQL8, an open source
 software created by the Georgia Tech Graphics Lab.
 .
 This package contains documentation, tutorials and examples.

libdart-all-dev: Kinematics Dynamics and Optimization Library - All Development Files

 DART is a collaborative, cross-platform, open source library created by the
 Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data
 structures and algorithms for kinematic and dynamic applications in robotics
 and computer animation.
 DART is distinguished by it's accuracy and stability due to its use of
 generalized coordinates to represent articulated rigid body systems and
 computation of Lagrange's equations derived from D.Alembert's principle to
 describe the dynamics of motion.
 For developers, in contrast to many popular physics engines which view the
 simulator as a black box, DART gives full access to internal kinematic and
 dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces,
 transformation matrices and their derivatives. DART also provides efficient
 computation of Jacobian matrices for arbitrary body points and coordinate
 frames. Contact and collision are handled using an implicit time-stepping,
 velocity-based LCP (linear-complementarity problem) to guarantee
 non-penetration, directional friction, and approximated Coulomb friction cone
 conditions. For collision detection, DART uses FCL developed by Willow Garage
 and the UNC Gamma Lab.
 DART has applications in robotics and computer animation because it features a
 multibody dynamic simulator and tools for control and motion planning.
 Multibody dynamic simulation in DART is an extension of RTQL8, an open source
 software created by the Georgia Tech Graphics Lab.
 .
 This package does not contain any file but install all development packages.
 .
 Metapackage for all development files.

libdart-collision-bullet-dev: Kinematics Dynamics and Optimization Library - Bullet Collision Dev

 DART is a collaborative, cross-platform, open source library created by the
 Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data
 structures and algorithms for kinematic and dynamic applications in robotics
 and computer animation.
 DART is distinguished by it's accuracy and stability due to its use of
 generalized coordinates to represent articulated rigid body systems and
 computation of Lagrange's equations derived from D.Alembert's principle to
 describe the dynamics of motion.
 For developers, in contrast to many popular physics engines which view the
 simulator as a black box, DART gives full access to internal kinematic and
 dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces,
 transformation matrices and their derivatives. DART also provides efficient
 computation of Jacobian matrices for arbitrary body points and coordinate
 frames. Contact and collision are handled using an implicit time-stepping,
 velocity-based LCP (linear-complementarity problem) to guarantee
 non-penetration, directional friction, and approximated Coulomb friction cone
 conditions. For collision detection, DART uses FCL developed by Willow Garage
 and the UNC Gamma Lab.
 DART has applications in robotics and computer animation because it features a
 multibody dynamic simulator and tools for control and motion planning.
 Multibody dynamic simulation in DART is an extension of RTQL8, an open source
 software created by the Georgia Tech Graphics Lab.

libdart-collision-bullet6.12: Kinematics Dynamics and Optimization Library - Bullet Collision Library

 DART is a collaborative, cross-platform, open source library created by the
 Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data
 structures and algorithms for kinematic and dynamic applications in robotics
 and computer animation.
 DART is distinguished by it's accuracy and stability due to its use of
 generalized coordinates to represent articulated rigid body systems and
 computation of Lagrange's equations derived from D.Alembert's principle to
 describe the dynamics of motion.
 For developers, in contrast to many popular physics engines which view the
 simulator as a black box, DART gives full access to internal kinematic and
 dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces,
 transformation matrices and their derivatives. DART also provides efficient
 computation of Jacobian matrices for arbitrary body points and coordinate
 frames. Contact and collision are handled using an implicit time-stepping,
 velocity-based LCP (linear-complementarity problem) to guarantee
 non-penetration, directional friction, and approximated Coulomb friction cone
 conditions. For collision detection, DART uses FCL developed by Willow Garage
 and the UNC Gamma Lab.
 DART has applications in robotics and computer animation because it features a
 multibody dynamic simulator and tools for control and motion planning.
 Multibody dynamic simulation in DART is an extension of RTQL8, an open source
 software created by the Georgia Tech Graphics Lab.
 .
 This package contains the collision library with Bullet backend.

libdart-collision-bullet6.12-dbgsym: debug symbols for libdart-collision-bullet6.12
libdart-collision-ode-dev: Kinematics Dynamics and Optimization Library - ODE Collision Dev

 DART is a collaborative, cross-platform, open source library created by the
 Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data
 structures and algorithms for kinematic and dynamic applications in robotics
 and computer animation.
 DART is distinguished by it's accuracy and stability due to its use of
 generalized coordinates to represent articulated rigid body systems and
 computation of Lagrange's equations derived from D.Alembert's principle to
 describe the dynamics of motion.
 For developers, in contrast to many popular physics engines which view the
 simulator as a black box, DART gives full access to internal kinematic and
 dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces,
 transformation matrices and their derivatives. DART also provides efficient
 computation of Jacobian matrices for arbitrary body points and coordinate
 frames. Contact and collision are handled using an implicit time-stepping,
 velocity-based LCP (linear-complementarity problem) to guarantee
 non-penetration, directional friction, and approximated Coulomb friction cone
 conditions. For collision detection, DART uses FCL developed by Willow Garage
 and the UNC Gamma Lab.
 DART has applications in robotics and computer animation because it features a
 multibody dynamic simulator and tools for control and motion planning.
 Multibody dynamic simulation in DART is an extension of RTQL8, an open source
 software created by the Georgia Tech Graphics Lab.
 .
 This package contains the collision ode headers and other tools for
 development.

libdart-collision-ode6.12: Kinematics Dynamics and Optimization Library - ODE Collision Library

 DART is a collaborative, cross-platform, open source library created by the
 Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data
 structures and algorithms for kinematic and dynamic applications in robotics
 and computer animation.
 DART is distinguished by it's accuracy and stability due to its use of
 generalized coordinates to represent articulated rigid body systems and
 computation of Lagrange's equations derived from D.Alembert's principle to
 describe the dynamics of motion.
 For developers, in contrast to many popular physics engines which view the
 simulator as a black box, DART gives full access to internal kinematic and
 dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces,
 transformation matrices and their derivatives. DART also provides efficient
 computation of Jacobian matrices for arbitrary body points and coordinate
 frames. Contact and collision are handled using an implicit time-stepping,
 velocity-based LCP (linear-complementarity problem) to guarantee
 non-penetration, directional friction, and approximated Coulomb friction cone
 conditions. For collision detection, DART uses FCL developed by Willow Garage
 and the UNC Gamma Lab.
 DART has applications in robotics and computer animation because it features a
 multibody dynamic simulator and tools for control and motion planning.
 Multibody dynamic simulation in DART is an extension of RTQL8, an open source
 software created by the Georgia Tech Graphics Lab.
 .
 This package contains the collision library with ODE backend.

libdart-collision-ode6.12-dbgsym: debug symbols for libdart-collision-ode6.12
libdart-dev: Kinematics Dynamics and Optimization Library - development files

 DART is a collaborative, cross-platform, open source library created by the
 Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data
 structures and algorithms for kinematic and dynamic applications in robotics
 and computer animation.
 DART is distinguished by it's accuracy and stability due to its use of
 generalized coordinates to represent articulated rigid body systems and
 computation of Lagrange's equations derived from D.Alembert's principle to
 describe the dynamics of motion.
 For developers, in contrast to many popular physics engines which view the
 simulator as a black box, DART gives full access to internal kinematic and
 dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces,
 transformation matrices and their derivatives. DART also provides efficient
 computation of Jacobian matrices for arbitrary body points and coordinate
 frames. Contact and collision are handled using an implicit time-stepping,
 velocity-based LCP (linear-complementarity problem) to guarantee
 non-penetration, directional friction, and approximated Coulomb friction cone
 conditions. For collision detection, DART uses FCL developed by Willow Garage
 and the UNC Gamma Lab.
 DART has applications in robotics and computer animation because it features a
 multibody dynamic simulator and tools for control and motion planning.
 Multibody dynamic simulation in DART is an extension of RTQL8, an open source
 software created by the Georgia Tech Graphics Lab.
 .
 This package contains main headers and other tools for development.

libdart-external-convhull-3d-dev: Kinematics Dynamics and Optimization Library - convhull-3d dev

 DART is a collaborative, cross-platform, open source library created by the
 Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data
 structures and algorithms for kinematic and dynamic applications in robotics
 and computer animation.
 DART is distinguished by it's accuracy and stability due to its use of
 generalized coordinates to represent articulated rigid body systems and
 computation of Lagrange's equations derived from D.Alembert's principle to
 describe the dynamics of motion.
 For developers, in contrast to many popular physics engines which view the
 simulator as a black box, DART gives full access to internal kinematic and
 dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces,
 transformation matrices and their derivatives. DART also provides efficient
 computation of Jacobian matrices for arbitrary body points and coordinate
 frames. Contact and collision are handled using an implicit time-stepping,
 velocity-based LCP (linear-complementarity problem) to guarantee
 non-penetration, directional friction, and approximated Coulomb friction cone
 conditions. For collision detection, DART uses FCL developed by Willow Garage
 and the UNC Gamma Lab.
 DART has applications in robotics and computer animation because it features a
 multibody dynamic simulator and tools for control and motion planning.
 Multibody dynamic simulation in DART is an extension of RTQL8, an open source
 software created by the Georgia Tech Graphics Lab.
 .
 A header only C implementation of the 3-D quickhull algorithm.

libdart-external-ikfast-dev: Kinematics Dynamics and Optimization Library - ikfast dev

 DART is a collaborative, cross-platform, open source library created by the
 Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data
 structures and algorithms for kinematic and dynamic applications in robotics
 and computer animation.
 DART is distinguished by it's accuracy and stability due to its use of
 generalized coordinates to represent articulated rigid body systems and
 computation of Lagrange's equations derived from D.Alembert's principle to
 describe the dynamics of motion.
 For developers, in contrast to many popular physics engines which view the
 simulator as a black box, DART gives full access to internal kinematic and
 dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces,
 transformation matrices and their derivatives. DART also provides efficient
 computation of Jacobian matrices for arbitrary body points and coordinate
 frames. Contact and collision are handled using an implicit time-stepping,
 velocity-based LCP (linear-complementarity problem) to guarantee
 non-penetration, directional friction, and approximated Coulomb friction cone
 conditions. For collision detection, DART uses FCL developed by Willow Garage
 and the UNC Gamma Lab.
 DART has applications in robotics and computer animation because it features a
 multibody dynamic simulator and tools for control and motion planning.
 Multibody dynamic simulation in DART is an extension of RTQL8, an open source
 software created by the Georgia Tech Graphics Lab.
 .
 This package contains ikfast headers and other useful tools for
 development.

libdart-external-imgui-dev: Kinematics Dynamics and Optimization Library - imgui dev

 DART is a collaborative, cross-platform, open source library created by the
 Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data
 structures and algorithms for kinematic and dynamic applications in robotics
 and computer animation.
 DART is distinguished by it's accuracy and stability due to its use of
 generalized coordinates to represent articulated rigid body systems and
 computation of Lagrange's equations derived from D.Alembert's principle to
 describe the dynamics of motion.
 For developers, in contrast to many popular physics engines which view the
 simulator as a black box, DART gives full access to internal kinematic and
 dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces,
 transformation matrices and their derivatives. DART also provides efficient
 computation of Jacobian matrices for arbitrary body points and coordinate
 frames. Contact and collision are handled using an implicit time-stepping,
 velocity-based LCP (linear-complementarity problem) to guarantee
 non-penetration, directional friction, and approximated Coulomb friction cone
 conditions. For collision detection, DART uses FCL developed by Willow Garage
 and the UNC Gamma Lab.
 DART has applications in robotics and computer animation because it features a
 multibody dynamic simulator and tools for control and motion planning.
 Multibody dynamic simulation in DART is an extension of RTQL8, an open source
 software created by the Georgia Tech Graphics Lab.
 .
 This package contains imgui headers and other useful tools for
 development.

libdart-external-imgui6.12: Kinematics Dynamics and Optimization Library - imgui lib

 DART is a collaborative, cross-platform, open source library created by the
 Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data
 structures and algorithms for kinematic and dynamic applications in robotics
 and computer animation.
 DART is distinguished by it's accuracy and stability due to its use of
 generalized coordinates to represent articulated rigid body systems and
 computation of Lagrange's equations derived from D.Alembert's principle to
 describe the dynamics of motion.
 For developers, in contrast to many popular physics engines which view the
 simulator as a black box, DART gives full access to internal kinematic and
 dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces,
 transformation matrices and their derivatives. DART also provides efficient
 computation of Jacobian matrices for arbitrary body points and coordinate
 frames. Contact and collision are handled using an implicit time-stepping,
 velocity-based LCP (linear-complementarity problem) to guarantee
 non-penetration, directional friction, and approximated Coulomb friction cone
 conditions. For collision detection, DART uses FCL developed by Willow Garage
 and the UNC Gamma Lab.
 DART has applications in robotics and computer animation because it features a
 multibody dynamic simulator and tools for control and motion planning.
 Multibody dynamic simulation in DART is an extension of RTQL8, an open source
 software created by the Georgia Tech Graphics Lab.
 .
 This package contains the imgui library.

libdart-external-imgui6.12-dbgsym: debug symbols for libdart-external-imgui6.12
libdart-external-lodepng-dev: Kinematics Dynamics and Optimization Library - lodepng dev

 DART is a collaborative, cross-platform, open source library created by the
 Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data
 structures and algorithms for kinematic and dynamic applications in robotics
 and computer animation.
 DART is distinguished by it's accuracy and stability due to its use of
 generalized coordinates to represent articulated rigid body systems and
 computation of Lagrange's equations derived from D.Alembert's principle to
 describe the dynamics of motion.
 For developers, in contrast to many popular physics engines which view the
 simulator as a black box, DART gives full access to internal kinematic and
 dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces,
 transformation matrices and their derivatives. DART also provides efficient
 computation of Jacobian matrices for arbitrary body points and coordinate
 frames. Contact and collision are handled using an implicit time-stepping,
 velocity-based LCP (linear-complementarity problem) to guarantee
 non-penetration, directional friction, and approximated Coulomb friction cone
 conditions. For collision detection, DART uses FCL developed by Willow Garage
 and the UNC Gamma Lab.
 DART has applications in robotics and computer animation because it features a
 multibody dynamic simulator and tools for control and motion planning.
 Multibody dynamic simulation in DART is an extension of RTQL8, an open source
 software created by the Georgia Tech Graphics Lab.
 .
 This package contains lodepng headers and other useful tools for
 development.

libdart-external-lodepng6.12: Kinematics Dynamics and Optimization Library - lodepng lib

 DART is a collaborative, cross-platform, open source library created by the
 Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data
 structures and algorithms for kinematic and dynamic applications in robotics
 and computer animation.
 DART is distinguished by it's accuracy and stability due to its use of
 generalized coordinates to represent articulated rigid body systems and
 computation of Lagrange's equations derived from D.Alembert's principle to
 describe the dynamics of motion.
 For developers, in contrast to many popular physics engines which view the
 simulator as a black box, DART gives full access to internal kinematic and
 dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces,
 transformation matrices and their derivatives. DART also provides efficient
 computation of Jacobian matrices for arbitrary body points and coordinate
 frames. Contact and collision are handled using an implicit time-stepping,
 velocity-based LCP (linear-complementarity problem) to guarantee
 non-penetration, directional friction, and approximated Coulomb friction cone
 conditions. For collision detection, DART uses FCL developed by Willow Garage
 and the UNC Gamma Lab.
 DART has applications in robotics and computer animation because it features a
 multibody dynamic simulator and tools for control and motion planning.
 Multibody dynamic simulation in DART is an extension of RTQL8, an open source
 software created by the Georgia Tech Graphics Lab.
 .
 This package contains the lodepng library.

libdart-external-lodepng6.12-dbgsym: debug symbols for libdart-external-lodepng6.12
libdart-external-odelcpsolver-dev: Kinematics Dynamics and Optimization Library - odelcpsolver dev

 DART is a collaborative, cross-platform, open source library created by the
 Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data
 structures and algorithms for kinematic and dynamic applications in robotics
 and computer animation.
 DART is distinguished by it's accuracy and stability due to its use of
 generalized coordinates to represent articulated rigid body systems and
 computation of Lagrange's equations derived from D.Alembert's principle to
 describe the dynamics of motion.
 For developers, in contrast to many popular physics engines which view the
 simulator as a black box, DART gives full access to internal kinematic and
 dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces,
 transformation matrices and their derivatives. DART also provides efficient
 computation of Jacobian matrices for arbitrary body points and coordinate
 frames. Contact and collision are handled using an implicit time-stepping,
 velocity-based LCP (linear-complementarity problem) to guarantee
 non-penetration, directional friction, and approximated Coulomb friction cone
 conditions. For collision detection, DART uses FCL developed by Willow Garage
 and the UNC Gamma Lab.
 DART has applications in robotics and computer animation because it features a
 multibody dynamic simulator and tools for control and motion planning.
 Multibody dynamic simulation in DART is an extension of RTQL8, an open source
 software created by the Georgia Tech Graphics Lab.
 .
 This package contains odelcpsolver headers and other useful tools for
 development.

libdart-external-odelcpsolver6.12: Kinematics Dynamics and Optimization Library - odelcpsolver lib

 DART is a collaborative, cross-platform, open source library created by the
 Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data
 structures and algorithms for kinematic and dynamic applications in robotics
 and computer animation.
 DART is distinguished by it's accuracy and stability due to its use of
 generalized coordinates to represent articulated rigid body systems and
 computation of Lagrange's equations derived from D.Alembert's principle to
 describe the dynamics of motion.
 For developers, in contrast to many popular physics engines which view the
 simulator as a black box, DART gives full access to internal kinematic and
 dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces,
 transformation matrices and their derivatives. DART also provides efficient
 computation of Jacobian matrices for arbitrary body points and coordinate
 frames. Contact and collision are handled using an implicit time-stepping,
 velocity-based LCP (linear-complementarity problem) to guarantee
 non-penetration, directional friction, and approximated Coulomb friction cone
 conditions. For collision detection, DART uses FCL developed by Willow Garage
 and the UNC Gamma Lab.
 DART has applications in robotics and computer animation because it features a
 multibody dynamic simulator and tools for control and motion planning.
 Multibody dynamic simulation in DART is an extension of RTQL8, an open source
 software created by the Georgia Tech Graphics Lab.
 .
 This package contains the odelcpsolver library.

libdart-external-odelcpsolver6.12-dbgsym: debug symbols for libdart-external-odelcpsolver6.12
libdart-gui-dev: Kinematics Dynamics and Optimization Library - gui dev files

 DART is a collaborative, cross-platform, open source library created by the
 Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data
 structures and algorithms for kinematic and dynamic applications in robotics
 and computer animation.
 DART is distinguished by it's accuracy and stability due to its use of
 generalized coordinates to represent articulated rigid body systems and
 computation of Lagrange's equations derived from D.Alembert's principle to
 describe the dynamics of motion.
 For developers, in contrast to many popular physics engines which view the
 simulator as a black box, DART gives full access to internal kinematic and
 dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces,
 transformation matrices and their derivatives. DART also provides efficient
 computation of Jacobian matrices for arbitrary body points and coordinate
 frames. Contact and collision are handled using an implicit time-stepping,
 velocity-based LCP (linear-complementarity problem) to guarantee
 non-penetration, directional friction, and approximated Coulomb friction cone
 conditions. For collision detection, DART uses FCL developed by Willow Garage
 and the UNC Gamma Lab.
 DART has applications in robotics and computer animation because it features a
 multibody dynamic simulator and tools for control and motion planning.
 Multibody dynamic simulation in DART is an extension of RTQL8, an open source
 software created by the Georgia Tech Graphics Lab.
 .
 This package contains GUI headers and other useful tools for GUI development.

libdart-gui-osg-dev: Kinematics Dynamics and Optimization Library - gui-osg dev files

 DART is a collaborative, cross-platform, open source library created by the
 Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data
 structures and algorithms for kinematic and dynamic applications in robotics
 and computer animation.
 DART is distinguished by it's accuracy and stability due to its use of
 generalized coordinates to represent articulated rigid body systems and
 computation of Lagrange's equations derived from D.Alembert's principle to
 describe the dynamics of motion.
 For developers, in contrast to many popular physics engines which view the
 simulator as a black box, DART gives full access to internal kinematic and
 dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces,
 transformation matrices and their derivatives. DART also provides efficient
 computation of Jacobian matrices for arbitrary body points and coordinate
 frames. Contact and collision are handled using an implicit time-stepping,
 velocity-based LCP (linear-complementarity problem) to guarantee
 non-penetration, directional friction, and approximated Coulomb friction cone
 conditions. For collision detection, DART uses FCL developed by Willow Garage
 and the UNC Gamma Lab.
 DART has applications in robotics and computer animation because it features a
 multibody dynamic simulator and tools for control and motion planning.
 Multibody dynamic simulation in DART is an extension of RTQL8, an open source
 software created by the Georgia Tech Graphics Lab.
 .
 This package contains GUI OpenSceneGraph headers and other useful tools for
 GUI OpenSceneGraph development.

libdart-gui-osg6.12: Kinematics Dynamics and Optimization Library - gui-osg library

 DART is a collaborative, cross-platform, open source library created by the
 Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data
 structures and algorithms for kinematic and dynamic applications in robotics
 and computer animation.
 DART is distinguished by it's accuracy and stability due to its use of
 generalized coordinates to represent articulated rigid body systems and
 computation of Lagrange's equations derived from D.Alembert's principle to
 describe the dynamics of motion.
 For developers, in contrast to many popular physics engines which view the
 simulator as a black box, DART gives full access to internal kinematic and
 dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces,
 transformation matrices and their derivatives. DART also provides efficient
 computation of Jacobian matrices for arbitrary body points and coordinate
 frames. Contact and collision are handled using an implicit time-stepping,
 velocity-based LCP (linear-complementarity problem) to guarantee
 non-penetration, directional friction, and approximated Coulomb friction cone
 conditions. For collision detection, DART uses FCL developed by Willow Garage
 and the UNC Gamma Lab.
 DART has applications in robotics and computer animation because it features a
 multibody dynamic simulator and tools for control and motion planning.
 Multibody dynamic simulation in DART is an extension of RTQL8, an open source
 software created by the Georgia Tech Graphics Lab.
 .
 This package contains the GUI OpenSceneGraph optimizer library.

libdart-gui-osg6.12-dbgsym: debug symbols for libdart-gui-osg6.12
libdart-gui6.12: Kinematics Dynamics and Optimization Library - gui library

 DART is a collaborative, cross-platform, open source library created by the
 Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data
 structures and algorithms for kinematic and dynamic applications in robotics
 and computer animation.
 DART is distinguished by it's accuracy and stability due to its use of
 generalized coordinates to represent articulated rigid body systems and
 computation of Lagrange's equations derived from D.Alembert's principle to
 describe the dynamics of motion.
 For developers, in contrast to many popular physics engines which view the
 simulator as a black box, DART gives full access to internal kinematic and
 dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces,
 transformation matrices and their derivatives. DART also provides efficient
 computation of Jacobian matrices for arbitrary body points and coordinate
 frames. Contact and collision are handled using an implicit time-stepping,
 velocity-based LCP (linear-complementarity problem) to guarantee
 non-penetration, directional friction, and approximated Coulomb friction cone
 conditions. For collision detection, DART uses FCL developed by Willow Garage
 and the UNC Gamma Lab.
 DART has applications in robotics and computer animation because it features a
 multibody dynamic simulator and tools for control and motion planning.
 Multibody dynamic simulation in DART is an extension of RTQL8, an open source
 software created by the Georgia Tech Graphics Lab.
 .
 This package contains the GUI library.

libdart-gui6.12-dbgsym: debug symbols for libdart-gui6.12
libdart-optimizer-ipopt-dev: Kinematics Dynamics and Optimization Library - ipopt optimizer dev

 DART is a collaborative, cross-platform, open source library created by the
 Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data
 structures and algorithms for kinematic and dynamic applications in robotics
 and computer animation.
 DART is distinguished by it's accuracy and stability due to its use of
 generalized coordinates to represent articulated rigid body systems and
 computation of Lagrange's equations derived from D.Alembert's principle to
 describe the dynamics of motion.
 For developers, in contrast to many popular physics engines which view the
 simulator as a black box, DART gives full access to internal kinematic and
 dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces,
 transformation matrices and their derivatives. DART also provides efficient
 computation of Jacobian matrices for arbitrary body points and coordinate
 frames. Contact and collision are handled using an implicit time-stepping,
 velocity-based LCP (linear-complementarity problem) to guarantee
 non-penetration, directional friction, and approximated Coulomb friction cone
 conditions. For collision detection, DART uses FCL developed by Willow Garage
 and the UNC Gamma Lab.
 DART has applications in robotics and computer animation because it features a
 multibody dynamic simulator and tools for control and motion planning.
 Multibody dynamic simulation in DART is an extension of RTQL8, an open source
 software created by the Georgia Tech Graphics Lab.
 .
 This package contains IPOPT optimizer headers and other useful tools for
 development.

libdart-optimizer-ipopt6.12: Kinematics Dynamics and Optimization Library - ipopt optimizer lib

 DART is a collaborative, cross-platform, open source library created by the
 Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data
 structures and algorithms for kinematic and dynamic applications in robotics
 and computer animation.
 DART is distinguished by it's accuracy and stability due to its use of
 generalized coordinates to represent articulated rigid body systems and
 computation of Lagrange's equations derived from D.Alembert's principle to
 describe the dynamics of motion.
 For developers, in contrast to many popular physics engines which view the
 simulator as a black box, DART gives full access to internal kinematic and
 dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces,
 transformation matrices and their derivatives. DART also provides efficient
 computation of Jacobian matrices for arbitrary body points and coordinate
 frames. Contact and collision are handled using an implicit time-stepping,
 velocity-based LCP (linear-complementarity problem) to guarantee
 non-penetration, directional friction, and approximated Coulomb friction cone
 conditions. For collision detection, DART uses FCL developed by Willow Garage
 and the UNC Gamma Lab.
 DART has applications in robotics and computer animation because it features a
 multibody dynamic simulator and tools for control and motion planning.
 Multibody dynamic simulation in DART is an extension of RTQL8, an open source
 software created by the Georgia Tech Graphics Lab.
 .
 This package contains the ipopt optimizer library.

libdart-optimizer-ipopt6.12-dbgsym: debug symbols for libdart-optimizer-ipopt6.12
libdart-optimizer-nlopt-dev: Kinematics Dynamics and Optimization Library - nlopt optimizer dev

 DART is a collaborative, cross-platform, open source library created by the
 Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data
 structures and algorithms for kinematic and dynamic applications in robotics
 and computer animation.
 DART is distinguished by it's accuracy and stability due to its use of
 generalized coordinates to represent articulated rigid body systems and
 computation of Lagrange's equations derived from D.Alembert's principle to
 describe the dynamics of motion.
 For developers, in contrast to many popular physics engines which view the
 simulator as a black box, DART gives full access to internal kinematic and
 dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces,
 transformation matrices and their derivatives. DART also provides efficient
 computation of Jacobian matrices for arbitrary body points and coordinate
 frames. Contact and collision are handled using an implicit time-stepping,
 velocity-based LCP (linear-complementarity problem) to guarantee
 non-penetration, directional friction, and approximated Coulomb friction cone
 conditions. For collision detection, DART uses FCL developed by Willow Garage
 and the UNC Gamma Lab.
 DART has applications in robotics and computer animation because it features a
 multibody dynamic simulator and tools for control and motion planning.
 Multibody dynamic simulation in DART is an extension of RTQL8, an open source
 software created by the Georgia Tech Graphics Lab.
 .
 This package contains NLOPT optimizer headers and other useful tools for
 development.

libdart-optimizer-nlopt6.12: Kinematics Dynamics and Optimization Library - nlopt optimizer lib

 DART is a collaborative, cross-platform, open source library created by the
 Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data
 structures and algorithms for kinematic and dynamic applications in robotics
 and computer animation.
 DART is distinguished by it's accuracy and stability due to its use of
 generalized coordinates to represent articulated rigid body systems and
 computation of Lagrange's equations derived from D.Alembert's principle to
 describe the dynamics of motion.
 For developers, in contrast to many popular physics engines which view the
 simulator as a black box, DART gives full access to internal kinematic and
 dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces,
 transformation matrices and their derivatives. DART also provides efficient
 computation of Jacobian matrices for arbitrary body points and coordinate
 frames. Contact and collision are handled using an implicit time-stepping,
 velocity-based LCP (linear-complementarity problem) to guarantee
 non-penetration, directional friction, and approximated Coulomb friction cone
 conditions. For collision detection, DART uses FCL developed by Willow Garage
 and the UNC Gamma Lab.
 DART has applications in robotics and computer animation because it features a
 multibody dynamic simulator and tools for control and motion planning.
 Multibody dynamic simulation in DART is an extension of RTQL8, an open source
 software created by the Georgia Tech Graphics Lab.
 .
 This package contains the NLOPT optimizer library.

libdart-optimizer-nlopt6.12-dbgsym: debug symbols for libdart-optimizer-nlopt6.12
libdart-utils-dev: Kinematics Dynamics and Optimization Library - utils dev files

 DART is a collaborative, cross-platform, open source library created by the
 Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data
 structures and algorithms for kinematic and dynamic applications in robotics
 and computer animation.
 DART is distinguished by it's accuracy and stability due to its use of
 generalized coordinates to represent articulated rigid body systems and
 computation of Lagrange's equations derived from D.Alembert's principle to
 describe the dynamics of motion.
 For developers, in contrast to many popular physics engines which view the
 simulator as a black box, DART gives full access to internal kinematic and
 dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces,
 transformation matrices and their derivatives. DART also provides efficient
 computation of Jacobian matrices for arbitrary body points and coordinate
 frames. Contact and collision are handled using an implicit time-stepping,
 velocity-based LCP (linear-complementarity problem) to guarantee
 non-penetration, directional friction, and approximated Coulomb friction cone
 conditions. For collision detection, DART uses FCL developed by Willow Garage
 and the UNC Gamma Lab.
 DART has applications in robotics and computer animation because it features a
 multibody dynamic simulator and tools for control and motion planning.
 Multibody dynamic simulation in DART is an extension of RTQL8, an open source
 software created by the Georgia Tech Graphics Lab.
 .
 This package contains headers and other useful tools for development.

libdart-utils-urdf-dev: Kinematics Dynamics and Optimization Library - URDF Component Development Files

 DART is a collaborative, cross-platform, open source library created by the
 Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data
 structures and algorithms for kinematic and dynamic applications in robotics
 and computer animation.
 DART is distinguished by it's accuracy and stability due to its use of
 generalized coordinates to represent articulated rigid body systems and
 computation of Lagrange's equations derived from D.Alembert's principle to
 describe the dynamics of motion.
 For developers, in contrast to many popular physics engines which view the
 simulator as a black box, DART gives full access to internal kinematic and
 dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces,
 transformation matrices and their derivatives. DART also provides efficient
 computation of Jacobian matrices for arbitrary body points and coordinate
 frames. Contact and collision are handled using an implicit time-stepping,
 velocity-based LCP (linear-complementarity problem) to guarantee
 non-penetration, directional friction, and approximated Coulomb friction cone
 conditions. For collision detection, DART uses FCL developed by Willow Garage
 and the UNC Gamma Lab.
 DART has applications in robotics and computer animation because it features a
 multibody dynamic simulator and tools for control and motion planning.
 Multibody dynamic simulation in DART is an extension of RTQL8, an open source
 software created by the Georgia Tech Graphics Lab.
 .
 This package contains urdf utils headers and other useful tools for
 development.

libdart-utils-urdf6.12: Kinematics Dynamics and Optimization Library - Utils URDF Library

 DART is a collaborative, cross-platform, open source library created by the
 Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data
 structures and algorithms for kinematic and dynamic applications in robotics
 and computer animation.
 DART is distinguished by it's accuracy and stability due to its use of
 generalized coordinates to represent articulated rigid body systems and
 computation of Lagrange's equations derived from D.Alembert's principle to
 describe the dynamics of motion.
 For developers, in contrast to many popular physics engines which view the
 simulator as a black box, DART gives full access to internal kinematic and
 dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces,
 transformation matrices and their derivatives. DART also provides efficient
 computation of Jacobian matrices for arbitrary body points and coordinate
 frames. Contact and collision are handled using an implicit time-stepping,
 velocity-based LCP (linear-complementarity problem) to guarantee
 non-penetration, directional friction, and approximated Coulomb friction cone
 conditions. For collision detection, DART uses FCL developed by Willow Garage
 and the UNC Gamma Lab.
 DART has applications in robotics and computer animation because it features a
 multibody dynamic simulator and tools for control and motion planning.
 Multibody dynamic simulation in DART is an extension of RTQL8, an open source
 software created by the Georgia Tech Graphics Lab.
 .
 This package contains the Utils URDF library.

libdart-utils-urdf6.12-dbgsym: debug symbols for libdart-utils-urdf6.12
libdart-utils6.12: Kinematics Dynamics and Optimization Library - utils library

 DART is a collaborative, cross-platform, open source library created by the
 Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data
 structures and algorithms for kinematic and dynamic applications in robotics
 and computer animation.
 DART is distinguished by it's accuracy and stability due to its use of
 generalized coordinates to represent articulated rigid body systems and
 computation of Lagrange's equations derived from D.Alembert's principle to
 describe the dynamics of motion.
 For developers, in contrast to many popular physics engines which view the
 simulator as a black box, DART gives full access to internal kinematic and
 dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces,
 transformation matrices and their derivatives. DART also provides efficient
 computation of Jacobian matrices for arbitrary body points and coordinate
 frames. Contact and collision are handled using an implicit time-stepping,
 velocity-based LCP (linear-complementarity problem) to guarantee
 non-penetration, directional friction, and approximated Coulomb friction cone
 conditions. For collision detection, DART uses FCL developed by Willow Garage
 and the UNC Gamma Lab.
 DART has applications in robotics and computer animation because it features a
 multibody dynamic simulator and tools for control and motion planning.
 Multibody dynamic simulation in DART is an extension of RTQL8, an open source
 software created by the Georgia Tech Graphics Lab.
 .
 This package contains the DART utils library.

libdart-utils6.12-dbgsym: debug symbols for libdart-utils6.12
libdart6.12: Kinematics Dynamics and Optimization Library - main library

 DART is a collaborative, cross-platform, open source library created by the
 Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data
 structures and algorithms for kinematic and dynamic applications in robotics
 and computer animation.
 DART is distinguished by it's accuracy and stability due to its use of
 generalized coordinates to represent articulated rigid body systems and
 computation of Lagrange's equations derived from D.Alembert's principle to
 describe the dynamics of motion.
 For developers, in contrast to many popular physics engines which view the
 simulator as a black box, DART gives full access to internal kinematic and
 dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces,
 transformation matrices and their derivatives. DART also provides efficient
 computation of Jacobian matrices for arbitrary body points and coordinate
 frames. Contact and collision are handled using an implicit time-stepping,
 velocity-based LCP (linear-complementarity problem) to guarantee
 non-penetration, directional friction, and approximated Coulomb friction cone
 conditions. For collision detection, DART uses FCL developed by Willow Garage
 and the UNC Gamma Lab.
 DART has applications in robotics and computer animation because it features a
 multibody dynamic simulator and tools for control and motion planning.
 Multibody dynamic simulation in DART is an extension of RTQL8, an open source
 software created by the Georgia Tech Graphics Lab.
 .
 This package contains the main library of DART.

libdart6.12-dbgsym: debug symbols for libdart6.12
python3-dartpy: Kinematics Dynamics and Optimization Library - DART Python bindings

 DART is a collaborative, cross-platform, open source library created by the
 Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data
 structures and algorithms for kinematic and dynamic applications in robotics
 and computer animation.
 DART is distinguished by it's accuracy and stability due to its use of
 generalized coordinates to represent articulated rigid body systems and
 computation of Lagrange's equations derived from D.Alembert's principle to
 describe the dynamics of motion.
 For developers, in contrast to many popular physics engines which view the
 simulator as a black box, DART gives full access to internal kinematic and
 dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces,
 transformation matrices and their derivatives. DART also provides efficient
 computation of Jacobian matrices for arbitrary body points and coordinate
 frames. Contact and collision are handled using an implicit time-stepping,
 velocity-based LCP (linear-complementarity problem) to guarantee
 non-penetration, directional friction, and approximated Coulomb friction cone
 conditions. For collision detection, DART uses FCL developed by Willow Garage
 and the UNC Gamma Lab.
 DART has applications in robotics and computer animation because it features a
 multibody dynamic simulator and tools for control and motion planning.
 Multibody dynamic simulation in DART is an extension of RTQL8, an open source
 software created by the Georgia Tech Graphics Lab.
 .
 This package does not contain any file but install all development packages.
 .
 DART Python bindings.