arpack 3.3.0-1build1 source package in Ubuntu

Changelog

arpack (3.3.0-1build1) xenial; urgency=medium

  * No-change rebuild for openmpi transition.

 -- Matthias Klose <email address hidden>  Mon, 01 Feb 2016 11:21:57 +0000

Upload details

Uploaded by:
Matthias Klose
Uploaded to:
Xenial
Original maintainer:
Debian Science Team
Architectures:
any
Section:
math
Urgency:
Medium Urgency

See full publishing history Publishing

Series Pocket Published Component Section

Downloads

File Size SHA-256 Checksum
arpack_3.3.0.orig.tar.gz 915.3 KiB ad59811e7d79d50b8ba19fd908f92a3683d883597b2c7759fdcc38f6311fe5b3
arpack_3.3.0-1build1.debian.tar.xz 8.3 KiB bf0f3cb012a8c79dd6f315f8f2ae960ed1551adb192f3cabad535b833b4a8a38
arpack_3.3.0-1build1.dsc 2.4 KiB b5f0b9c1f8462333dc366631965a0f95e9992473eca9ce30313c19a806aad179

View changes file

Binary packages built by this source

libarpack2: Fortran77 subroutines to solve large scale eigenvalue problems

 ARPACK software is capable of solving large scale symmetric,
 nonsymmetric, and generalized eigenproblems from significant
 application areas. The software is designed to compute a few (k)
 eigenvalues with user specified features such as those of largest
 real part or largest magnitude. Storage requirements are on the order
 of n*k locations. No auxiliary storage is required. A set of Schur
 basis vectors for the desired k-dimensional eigen-space is computed
 which is numerically orthogonal to working precision. Numerically
 accurate eigenvectors are available on request.
 .
 Important Features:
 .
  * Reverse Communication Interface.
  * Single and Double Precision Real Arithmetic Versions for Symmetric,
    Non-symmetric,
  * Standard or Generalized Problems.
  * Single and Double Precision Complex Arithmetic Versions for Standard or
    Generalized Problems.
  * Routines for Banded Matrices - Standard or Generalized Problems.
  * Routines for The Singular Value Decomposition.
  * Example driver routines that may be used as templates to implement
    numerous Shift-Invert strategies for all problem types, data types and
    precision.
 .
 This package contains the shared library.

libarpack2-dbg: Fortran77 subroutines to solve large scale eigenvalue problems (debug)

 ARPACK software is capable of solving large scale symmetric,
 nonsymmetric, and generalized eigenproblems from significant
 application areas. The software is designed to compute a few (k)
 eigenvalues with user specified features such as those of largest
 real part or largest magnitude. Storage requirements are on the order
 of n*k locations. No auxiliary storage is required. A set of Schur
 basis vectors for the desired k-dimensional eigen-space is computed
 which is numerically orthogonal to working precision. Numerically
 accurate eigenvectors are available on request.
 .
 This package contains the debugging symbols for libarpack and libparpack.

libarpack2-dbgsym: debug symbols for package libarpack2

 ARPACK software is capable of solving large scale symmetric,
 nonsymmetric, and generalized eigenproblems from significant
 application areas. The software is designed to compute a few (k)
 eigenvalues with user specified features such as those of largest
 real part or largest magnitude. Storage requirements are on the order
 of n*k locations. No auxiliary storage is required. A set of Schur
 basis vectors for the desired k-dimensional eigen-space is computed
 which is numerically orthogonal to working precision. Numerically
 accurate eigenvectors are available on request.
 .
 Important Features:
 .
  * Reverse Communication Interface.
  * Single and Double Precision Real Arithmetic Versions for Symmetric,
    Non-symmetric,
  * Standard or Generalized Problems.
  * Single and Double Precision Complex Arithmetic Versions for Standard or
    Generalized Problems.
  * Routines for Banded Matrices - Standard or Generalized Problems.
  * Routines for The Singular Value Decomposition.
  * Example driver routines that may be used as templates to implement
    numerous Shift-Invert strategies for all problem types, data types and
    precision.
 .
 This package contains the shared library.

libarpack2-dev: Fortran77 subroutines to solve large scale eigenvalue problems (development)

 ARPACK software is capable of solving large scale symmetric,
 nonsymmetric, and generalized eigenproblems from significant
 application areas. The software is designed to compute a few (k)
 eigenvalues with user specified features such as those of largest
 real part or largest magnitude. Storage requirements are on the order
 of n*k locations. No auxiliary storage is required. A set of Schur
 basis vectors for the desired k-dimensional eigen-space is computed
 which is numerically orthogonal to working precision. Numerically
 accurate eigenvectors are available on request.
 .
 This package contains the static libraries and the documentation for
 development with libarpack (including examples).

libarpack2-dev-dbgsym: debug symbols for package libarpack2-dev

 ARPACK software is capable of solving large scale symmetric,
 nonsymmetric, and generalized eigenproblems from significant
 application areas. The software is designed to compute a few (k)
 eigenvalues with user specified features such as those of largest
 real part or largest magnitude. Storage requirements are on the order
 of n*k locations. No auxiliary storage is required. A set of Schur
 basis vectors for the desired k-dimensional eigen-space is computed
 which is numerically orthogonal to working precision. Numerically
 accurate eigenvectors are available on request.
 .
 This package contains the static libraries and the documentation for
 development with libarpack (including examples).

libparpack2: Parallel subroutines to solve large scale eigenvalue problems

 ARPACK software is capable of solving large scale symmetric,
 nonsymmetric, and generalized eigenproblems from significant
 application areas. The software is designed to compute a few (k)
 eigenvalues with user specified features such as those of largest
 real part or largest magnitude. Storage requirements are on the order
 of n*k locations. No auxiliary storage is required. A set of Schur
 basis vectors for the desired k-dimensional eigen-space is computed
 which is numerically orthogonal to working precision. Numerically
 accurate eigenvectors are available on request.
 .
 Important Features:
 .
  * Reverse Communication Interface.
  * Single and Double Precision Real Arithmetic Versions for Symmetric,
    Non-symmetric,
  * Standard or Generalized Problems.
  * Single and Double Precision Complex Arithmetic Versions for Standard or
    Generalized Problems.
  * Routines for Banded Matrices - Standard or Generalized Problems.
  * Routines for The Singular Value Decomposition.
  * Example driver routines that may be used as templates to implement
    numerous Shift-Invert strategies for all problem types, data types and
    precision.
 .
 This package provides parpack: the MPI implementation of arpack.
 .
 This package contains the shared library.

libparpack2-dbg: Parallel subroutines to solve large scale eigenvalue problems (debug)

 ARPACK software is capable of solving large scale symmetric,
 nonsymmetric, and generalized eigenproblems from significant
 application areas. The software is designed to compute a few (k)
 eigenvalues with user specified features such as those of largest
 real part or largest magnitude. Storage requirements are on the order
 of n*k locations. No auxiliary storage is required. A set of Schur
 basis vectors for the desired k-dimensional eigen-space is computed
 which is numerically orthogonal to working precision. Numerically
 accurate eigenvectors are available on request.
 .
 This package contains the debugging symbols for libparpack.

libparpack2-dbgsym: debug symbols for package libparpack2

 ARPACK software is capable of solving large scale symmetric,
 nonsymmetric, and generalized eigenproblems from significant
 application areas. The software is designed to compute a few (k)
 eigenvalues with user specified features such as those of largest
 real part or largest magnitude. Storage requirements are on the order
 of n*k locations. No auxiliary storage is required. A set of Schur
 basis vectors for the desired k-dimensional eigen-space is computed
 which is numerically orthogonal to working precision. Numerically
 accurate eigenvectors are available on request.
 .
 Important Features:
 .
  * Reverse Communication Interface.
  * Single and Double Precision Real Arithmetic Versions for Symmetric,
    Non-symmetric,
  * Standard or Generalized Problems.
  * Single and Double Precision Complex Arithmetic Versions for Standard or
    Generalized Problems.
  * Routines for Banded Matrices - Standard or Generalized Problems.
  * Routines for The Singular Value Decomposition.
  * Example driver routines that may be used as templates to implement
    numerous Shift-Invert strategies for all problem types, data types and
    precision.
 .
 This package provides parpack: the MPI implementation of arpack.
 .
 This package contains the shared library.

libparpack2-dev: Parallel subroutines to solve large scale eigenvalue problems (development)

 ARPACK software is capable of solving large scale symmetric,
 nonsymmetric, and generalized eigenproblems from significant
 application areas. The software is designed to compute a few (k)
 eigenvalues with user specified features such as those of largest
 real part or largest magnitude. Storage requirements are on the order
 of n*k locations. No auxiliary storage is required. A set of Schur
 basis vectors for the desired k-dimensional eigen-space is computed
 which is numerically orthogonal to working precision. Numerically
 accurate eigenvectors are available on request.
 .
 This package contains the static libraries and the documentation for
 development with libparpack (including examples).

libparpack2-dev-dbgsym: debug symbols for package libparpack2-dev

 ARPACK software is capable of solving large scale symmetric,
 nonsymmetric, and generalized eigenproblems from significant
 application areas. The software is designed to compute a few (k)
 eigenvalues with user specified features such as those of largest
 real part or largest magnitude. Storage requirements are on the order
 of n*k locations. No auxiliary storage is required. A set of Schur
 basis vectors for the desired k-dimensional eigen-space is computed
 which is numerically orthogonal to working precision. Numerically
 accurate eigenvectors are available on request.
 .
 This package contains the static libraries and the documentation for
 development with libparpack (including examples).